?lm
?read.csv
?dplyr::rename
0_clean_data.R
, 1_merge_census_data.R
, 3_fit_multilevel models.R
setwd("/Users/cskovron/Dropbox/Research/ncs-constituent-eval/analysis")
# on Mac is equivalent to
setwd("~/Dropbox/Research/ncs-constituent-eval/analysis")
import os
path="~/Dropbox/Research/ncs-constituent-eval/analysis"
os.chdir(path)
cd "~/Dropbox/Research/ncs-constituent-eval/analysis"
dat <- read.csv("some-file-in-your-working-directory.csv", stringsAsFactors = FALSE)
~
Your home directory (on my Mac, /Users/cskovron/
).
The current directory (./images/
is a subfolder of the working directory called images
)..
The parent of the current directory (the directory the working directory is in)write.csv(some.data.to.save, "./data-subfolder/data-filename.csv")
View()
(but be careful!)summary()
(be careful on big datasets)head()
and tail()
tibble::glimpse()
is.na()
and sum(is.na())
issues.names.titles.csv
paste()
and paste0()
to help write captions and labelsdata[, issue]
, if issue
is a character vector, selects just that column. Loop over issues